
XPM Manual

The X PixMap Format

Version: 3.3

December 20th 1993

Arnaud Le Hors
lehors@sophia.inria.fr

© BULL 1989-94

Copyright restrictions

Copyright 1989-94 GROUPE BULL

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and

without fee is hereby granted, provided that the above copyright notice appear in all copies and that both

that copyright notice and this permission notice appear in supporting documentation, and that the name of

GROUPE BULL not be used in advertising or publicity pertaining to distribution of the software without spe-

cific, written prior permission. GROUPE BULL makes no representations about the suitability of this soft-

ware for any purpose. It is provided “as is” without express or implied warranty.

GROUPE BULL disclaims all warranties with regard to this software, including all implied warranties of merchant-

ability and fitness, in no event shall GROUPE BULL be liable for any special, indirect or consequential damages or

any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other

tortious action, arising out of or in connection with the use or performance of this software.

Acknowledgements

I want to thank my team partner and friend Colas Nahaboo who proposed me this project, and who actively participates

to its design. I also want to thank all the users who help me to improve the library by giving feed back and sending bug

reports.

Arnaud Le Hors
KOALA Project – BULL Research c/o INRIA

2004 route des Lucioles – 06565 Valbonne Cedex – FRANCE

Support

You can mail any question or suggestion relative to XPM by electronic mail to lehors@sophia.inria.fr.

There is also a mailing list, please mail requests to xpm-talk-request@sophia.inria.fr to subscribe. You

can find the latest release by anonymous ftp on avahi.inria.fr (138.96.24.30) or ftp.x.org (198.112.44.100), and also an

archive of the mailing list on avahi.

XPM Manual

Table of Contents

Chapter 1: Introduction ... 5

Chapter 2: The XPM Format .. 6

Chapter 3: The XPM Library .. 9

3.1 The Basic Level Interface ... 9

3.1.1 The structures ... 9

3.1.2 Functions to deal with XPM files .. 11

3.1.3 Functions to deal with XPM data .. 14

3.1.4 Functions to deal with XPM files and data .. 16

3.1.5 Functions to deal with XPM buffers .. 16

3.1.6 Functions to deal with XPM files and buffers 18

3.1.7 Miscellaneous functions .. 19

3.2 The Advanced Level Interface .. 20

3.2.1 The structures ... 20

3.2.2 Functions to deal with XPM files .. 21

3.2.3 Functions to deal with XPM data .. 22

3.2.4 Functions to deal with XPM buffers .. 23

3.2.5 Functions to deal with X images .. 23

3.2.6 Functions to deal with X pixmaps ... 24

3.2.7 Miscellaneous functions .. 25

XPM Manual

5

Chapter 1

Introduction

First, Why another image format? We (Koala team at Bull Research, France) felt that most images bundled with X

applications will be small "icons", and that since many applications are color-customizable, existing image formats

such as gif, tiff, iff, etc... were intended for big images with well-defined colors and so weren’t adapted to the task. So

XPM was designed with these criterions in mind:

• be editable by hand (under emacs, vi...). Although this sounds pretty weird today.

• be includable in C code. It is unreasonable to load 1000 pixmap files on each start of an application.

• be a portable, mailable ascii format.

• provide defaults for monochrome/color/grayscale renderings.

• provide overriding of colors. This way if the user wants your application to be bluish instead of greenish, you can

use the SAME icon files.

• allow comments to be included in the file.

• compression must be managed apart of the format.

XPM Manual

6

Chapter 2

The XPM Format

The XPM format presents a C syntax, in order to provide the ability to include XPM files in C and C++ programs. It

is in fact an array of strings composed of six different sections as follows:

/* XPM */ static char* <variable_name>[] = {

<Values>

<Colors>

<Pixels>

<Extensions>

};

The words are separated by a white space which can be composed of space and tabulation characters.

The <Values> section is a string containing four or six integers in base 10 that correspond to: the pixmap width and

height, the number of colors, the number of characters per pixel (so there is no limit on the number of colors), and,

optionally the hotspot coordinates and the XPMEXT tag if there is any extension following the <Pixels> section.

<width> <height> <ncolors> <cpp> [<x_hotspot> <y_hotspot>] [XPMEXT]

The Colors section contains as many strings as there are colors, and each string is as follows:

<chars> {<key> <color>}+

Where <chars> is the <chars_per_pixel> length string (not surrounded by anything) representing the pixels,

<color> is the specified color, and <key> is a keyword describing in which context this color should be used. Cur-

rently the keys may have the following values:

 m for mono visual

 s for symbolic name

 g4 for 4-level grayscale

 g for grayscale with more than 4 levels

 c for color visual

Colors can be specified by giving the colorname, a # followed by the RGB code in hexadecimal, or a % followed by

the HSV code (not implemented). The symbolic name provides the ability of specifying the colors at load time and not

to hard-code them in the file. Also the string None can be given as a colorname to mean “transparent”. Transparency

is handled by providing a masking bitmap in addition to the pixmap.

The <Pixels> section is composed by <height> strings of <width> * <chars_per_pixel> characters,

XPM Manual

7

where every <chars_per_pixel> length string must be one of the previously defined groups in the <Colors>

section.

Then follows the <Extensions> section which must be labeled, if not empty, in the <Values> section as previ-

ously described. This section may be composed by several <Extension> subsections which may be of two types:

• one stand alone string composed as follows:

XPMEXT <extension-name> <extension-data>

• or a block composed by several strings:

XPMEXT <extension-name>

<related extension-data composed of several strings>

Finally, if not empty, this section must end by the following string:

XPMENDEXT

To avoid possible conflicts with extension names in shared files, they should be prefixed by the name of the company.

This would ensure unicity.

XPM Manual

8

Below is an example which is the XPM file of a plaid pixmap. This is a 22x22 pixmap, with 4 colors and 2 characters

per pixel. The hotspot coordinates are (0, 0). There are symbols and default colors for color and monochrome visuals.

Finally there are two extensions.

/* XPM */

static char * plaid[] = {

/* plaid pixmap

 * width height ncolors chars_per_pixel */

"22 22 4 2 0 0 XPMEXT",

/* colors */

" c red m white s light_color ",

"Y c green m black s lines_in_mix ",

"+ c yellow m white s lines_in_dark ",

"x m black s dark_color ",

/* pixels */

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

"Y Y Y Y Y x Y Y Y Y Y + x + x + x + x + x + ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

"x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x "

"XPMEXT ext1 data1",

"XPMEXT ext2",

"data2_1",

"data2_2",

"XPMENDEXT"

};

XPM Manual

9

Chapter 3

The XPM Library

The XPM library basically provides two sets of Xlib-level functions in the C language. Most people should only know

about the first one since it provides what most likely one need with a simple interface. The second set, which stands

as a lower level called from the first one, is designed to be used from within applications which have more specific

needs such as a pixmap editor or applications which needs to cache data such as Xpm files.

3.1 The Basic Level Interface

The basic level interface allows to deal with XImage, Pixmap, XPM file, data (included XPM file), buffer (XPM file

in memory), and in many ways.

The following subsections describe these functions and how to use them.

3.1.1 The structures

To provide a simple interface all the functions take, in addition to their main arguments such as a filename, a structure

called XpmAttributes. This structure is composed of attributes to pass data such as colormap and visual and attributes

to retrieve returned data such as pixmap’s width and height. The XpmAttributes structure is defined as follows:

typedef struct {

unsigned long valuemask; /* Specifies which attributes are defined */

Visual *visual; /* Specifies the visual to use */

Colormap colormap; /* Specifies the colormap to use */

unsigned int depth; /* Specifies the depth */

unsigned int width; /* Returns the width of the created pixmap */

unsigned int height; /* Returns the height of the created pixmap */

unsigned int x_hotspot; /* Returns the x hotspot’s coordinate */

unsigned int y_hotspot; /* Returns the y hotspot’s coordinate */

unsigned int cpp; /* Specifies the number of char per pixel */

Pixel *pixels; /* List of used color pixels */

unsigned int npixels; /* Number of pixels */

XpmColorSymbol *colorsymbols; /* Array of color symbols to override */

unsigned int numsymbols; /* Number of symbols */

XPM Manual

10

char *rgb_fname; /* RGB text file name */

unsigned int nextensions; /* Number of extensions */

XpmExtension *extensions; /* Array of extensions */

 /* Color Allocation Directives */

unsigned int exactColors; /* Only use exact colors for visual */

unsigned int closeness; /* Allowable RGB deviation */

unsigned int red_closeness; /* Allowable red deviation */

unsigned int green_closeness; /* Allowable green deviation */

unsigned int blue_closeness; /* Allowable blue deviation */

int color_key; /* Use colors from this color set */

} XpmAttributes;

The valuemask is the bitwise inclusive OR of the valid attribute mask bits. If the valuemask is zero, the attributes are

ignored and not referenced. And default values are taken for needed attributes which are not specified. This valuemask

had to be part of the structure to let Xpm functions modify its value when returning possible data such as hotspot co-

ordinates.

NOTE: In any case this valuemask must be set to some valid value, at least zero, otherwise unpredictable errors can

occur.

To allow overriding of colors at load time the XPM library defines the XpmColorSymbol structure which contains:

typedef struct {

 char *name; /* Symbolic color name */

 char *value; /* Color value */

 Pixel pixel; /* Color pixel */

} XpmColorSymbol;

So, to override default colors at load time, you just have to pass, via the XpmAttributes structure, a list of XpmCol-

orSymbol elements containing the desired colors to the XpmReadFileToPixmap or XpmCreatePixmapFromData

XPM functions. These colors can be specified by giving the color name in the value member or directly by giving the

corresponding pixel in the pixel member. In the latter case the value member must be set to NULL otherwise the given

pixel will not be considered.

In addition, it is possible to set the pixel for a specific color value at load time by setting the color name to NULL, and

setting the value and pixel fields appropriately. For example, by setting the color name to NULL, the value to “red”

and the pixel to 51, all symbolic colors that are assigned to “red” will be set to pixel 51. It is even possible to specify

the pixel used for the transparent color “none” when no mask is required.

To pass and retrieve extension data use the XpmExtension structure which is defined below:

typedef struct {

 char *name; /* name of the extension */

 unsigned int nlines; /* number of lines in this extension */

XPM Manual

11

 char **lines; /* pointer to the extension array of strings */

} XpmExtension;

To retrieve possible extension data stored in an XPM file or data, you must set the mask bits XpmReturnExtensions

to the valuemask of an XpmAttributes structure that you pass to the read function you use. Then the same structure

may be passed the same way to any write function if you set the mask bits XpmExtensions to the valuemask.

3.1.2 Functions to deal with XPM files

To create an XImage from an XPM file, use XpmReadFileToImage.

int XpmReadFileToImage(display, filename, image_return, shapeimage_return, attributes)

Display *display;

char *filename;

XImage **image_return;

XImage **shapeimage_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

filename Specifies the file name to use.

image_return Returns the image which is created.

shapeimage_return Returns the shape mask image which is created if the color None is used.

attributes Specifies the location of a structure to get and store information (or NULL).

The XpmReadFileToImage function reads in a file in the XPM format. If the file cannot be opened it returns Xp-

mOpenFailed. If the file can be opened but does not contain valid XPM data, it returns XpmFileInvalid. If insuffi-

cient working storage is allocated, it returns XpmNoMemory.

If the passed XpmAttributes structure pointer is not NULL, XpmReadFileToImage looks for the following at-

tributes: XpmVisual, XpmColormap, XpmDepth, XpmColorSymbols, XpmExactColors, XpmCloseness, Xpm-

RGBCloseness, XpmReturnPixels, XpmReturnExtensions, and sets the XpmSize and possibly the XpmHotspot

attributes when returning. In any case the valuemask of the passed XpmAttributes must be set to some valid value, at

least zero, otherwise unpredictable errors can occur.

XpmReadFileToImage allocates colors, as read from the file or possibly overridden as specified in the XpmCol-

orSymbols attributes. The colors are allocated using the color settings for the visual specified by the XpmColorKey

attribute, which has the value XPM_MONO, XPM_GRAY4, XPM_GRAY, or XPM_COLOR. If the XpmColor-

Key attribute is not set it is determined by examining the type of visual.

If no default value exists for the specified visual, it first looks for other defaults nearer to the monochrome visual type

and secondly nearer to the color visual type. If the color which is found is not valid (cannot be parsed), it looks for

another default one according to the same algorithm.

If allocating a color fails, and the closeness attribute is set, it tries to find a color already in the colormap that is closest

to the desired color, and uses that. If no color can be found that is within closeness of the Red, Green and Blue com-

ponents of the desired color, it reverts to trying other default values as explained above. For finer control over the close-

ness requirements of a particular icon, the red_closeness, green_closeness, and blue_closeness attributes may be

XPM Manual

12

used instead of the more general closeness attribute.

The RGB components are integers within the range 0 (black) to 65535 (white). A closeness of less than 10000, for

example, will cause only quite close colors to be matched, while a closeness of more than 50000 will allow quite dis-

similar colors to match. Specifying a closeness of more than 65535 will allow any color to match, thus forcing the icon

to be drawn in color no matter how bad the colormap is. The value 40000 seems to be about right for many situations

requiring reasonable but not perfect matches. With this setting the color must only be within the same general area of

the RGB cube as the desired color.

If the exactColors attribute is set it then returns XpmColorError, otherwise it creates the images and returns Xpm-

Success. If no color is found, and no close color exists or is wanted, and all visuals have been exhausted, XpmColor-

Failed is returned.

XpmReadFileToImage returns the created image to image_return if not NULL and possibly the created shapemask

to shapeimage_return if not NULL and the color None is used. If required it stores into the XpmAttributes structure

the list of the used pixels.

When finished the caller must free the images using XDestroyImage, the colors using XFreeColors, and possibly the

data returned into the XpmAttributes using XpmFreeAttributes.

In addition on systems which support such features XpmReadFileToImage deals with compressed files by forking an

uncompress or gzip process and reading from the piped result. It assumes that the specified file is compressed if the

given file name ends by ’.Z’ or ’.gz’. In case the file name does not end so, XpmReadFileToImage first looks for a

file of which the name is the given one followed by ’.Z’ or ’.gz’; then if such a file does not exist, it looks for the given

file (assumed as not compressed). And if instead of a file name NULL is passed to XpmReadFileToImage, it reads

from the standard input.

To create a Pixmap from an XPM file, use XpmReadFileToPixmap.

int XpmReadFileToPixmap(display, d, filename, pixmap_return, shapemask_return, attributes)

Display *display;

Drawable d;

char *filename;

Pixmap *pixmap_return;

Pixmap *shapemask_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

filename Specifies the file name to use.

pixmap_return Returns the pixmap which is created.

shapemask_return Returns the shapemask which is created if the color None is used.

attributes Specifies the location of a structure to get and store information (or NULL).

The XpmReadFileToPixmap function creates X images using XpmReadFileToImage and thus returns the same er-

rors. In addition on success it then creates the related pixmaps, using XPutImage, which are returned to pixmap_return

and shapemask_return if not NULL, and finally destroys the created images using XDestroyImage.

XPM Manual

13

When finished the caller must free the pixmaps using XFreePixmap, the colors using XFreeColors, and possibly the

data returned into the XpmAttributes using XpmFreeAttributes.

XpmWriteFileFromImage writes out an XImage to an XPM file.

int XpmWriteFileFromImage(display, filename, image, shapeimage, attributes)

Display *display;

char *filename;

XImage *image;

XImage *shapeimage;

XpmAttributes *attributes;

display Specifies the connection to the X server.

filename Specifies the file name to use.

image Specifies the image.

shapeimage Specifies the shape mask image.

attributes Specifies the location of a structure containing information (or NULL).

The XpmWriteFileFromImage function writes an image and its possible shapeimage out to a file in the XPM format.

If the file cannot be opened, it returns XpmOpenFailed. If insufficient working storage is allocated, it returns Xpm-

NoMemory. If no error occurs then it returns XpmSuccess.

If the passed XpmAttributes structure pointer is not NULL, XpmWriteFileFromImage looks for the following at-

tributes: XpmColormap, XpmSize, XpmHotspot, XpmCharsPerPixel, XpmRgbFilename, and XpmExtensions.

If the XpmSize attributes are not defined XpmWriteFileFromImage performs an XGetGeometry operation. If the

filename contains an extension such as “.xpm”, in order to get a valid C variable name, the dot character is replaced

by an underscore ’_’ when writing out. Also if the XpmRgbFilename attribute is defined, XpmWriteFileFromImage

searches for color names in this file and if found writes them out instead of the rgb values.

In addition on systems which support such features if the given file name ends by ’.Z’ or ’.gz’ it is assumed to be a

compressed file. Then, XpmWriteFileFromImage writes to a piped compress or gzip process. And if instead of a

file name NULL is passed to XpmWriteFileFromImage, it writes to the standard output.

To write out a Pixmap to an XPM file, use XpmWriteFileFromPixmap.

int XpmWriteFileFromPixmap(display, filename, pixmap, shapemask, attributes)

Display *display;

char *filename;

Pixmap pixmap;

Pixmap shapemask;

XpmAttributes *attributes;

display Specifies the connection to the X server.

filename Specifies the file name to use.

pixmap Specifies the pixmap.

shapemask Specifies the shape mask pixmap.

XPM Manual

14

attributes Specifies the location of a structure containing information (or NULL).

The XpmWriteFileFromPixmap function uses XGetImage to get from the given pixmaps the related X images

which are passed to XpmWriteFileFromImage. Finally XpmWriteFileFromPixmap destroys the created images

using XDestroyImage. The XpmWriteFileFromPixmap function returns the same errors as XpmWriteFileFro-

mImage.

3.1.3 Functions to deal with XPM data

An XPM data is an array of character strings which may be obtained by simply including an XPM file into a C pro-

gram.

To create an XImage from an XPM data, use XpmCreateImageFromData.

int XpmCreateImageFromData(display, data, image_return, shapeimage_return, attributes)

Display *display;

char **data;

XImage **image_return;

XImage **shapeimage_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

data Specifies the location of the data.

image_return Returns the image which is created.

shapeimage_return Returns the shape mask image which is created if the color None is used.

attributes Specifies the location of a structure to get and store information (or NULL).

The XpmCreateImageFromData function allows you to include in your C program an XPM file which was written

out by functions such as XpmWriteFileFromImage or XpmWriteFileFromPixmap without reading in the file.

XpmCreateImageFromData exactly works as XpmReadFileToImage does and returns the same way. It just reads

data instead of a file. Here again, it is the caller’s responsibility to free the returned images, the colors and possibly the

data returned into the XpmAttributes structure.

To create a Pixmap from an XPM data, use XpmCreatePixmapFromData.

int XpmCreatePixmapFromData(display, d, data, pixmap_return, shapemask_return, attributes)

Display *display;

Drawable d;

char **data;

Pixmap *pixmap_return;

Pixmap *shapemask_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

XPM Manual

15

data Specifies the location of the data.

pixmap_return Returns the pixmap which is created.

shapemask_return Returns the shape mask pixmap which is created if the color None is used.

attributes Specifies the location of a structure to get and store information (or NULL).

The XpmCreatePixmapFromData function creates X images using XpmCreateImageFromData and thus returns

the same errors. In addition on success it then creates the related pixmaps, using XPutImage, which are returned to

pixmap_return and shapemask_return if not NULL, and finally destroys the created images using XDestroyImage.

Do not forget to free the returned pixmaps, the colors, and possibly the data returned into the XpmAttributes structure

when done.

In some cases, one may want to create an XPM data from an XImage, to do so use XpmCreateDataFromImage.

int XpmCreateDataFromImage(display, data_return, image, shapeimage, attributes)

Display *display;

char ***data_return;

XImage *image;

XImage *shapeimage;

XpmAttributes *attributes;

display Specifies the connection to the X server.

data_return Returns the data which is created.

image Specifies the image.

shapeimage Specifies the shape mask image.

attributes Specifies the location of a structure containing information (or NULL).

The XpmCreateDataFromImage function exactly works as XpmWriteFileFromImage does and returns the same

way. It just writes to a single block malloc’ed data instead of to a file. It is the caller’s responsibility to free the data,

using XpmFree when finished.

XpmCreateDataFromPixmap creates an XPM data from a Pixmap.

int XpmCreateDataFromPixmap(display, data_return, pixmap, shapemask, attributes)

Display *display;

char ***data_return;

Pixmap pixmap;

Pixmap shapemask;

XpmAttributes *attributes;

display Specifies the connection to the X server.

data_return Returns the data which is created.

pixmap Specifies the pixmap.

shapemask Specifies the shape mask pixmap.

attributes Specifies the location of a structure containing information (or NULL).

XPM Manual

16

The XpmCreateDataFromPixmap function uses XGetImage to get from the given pixmaps the related X images

which are passed to XpmCreateDataFromImage. Then it destroys the created images using XDestroyImage. Xpm-

CreateDataFromPixmap returns the same errors as XpmCreateDataFromImage.

3.1.4 Functions to deal with XPM files and data

To directly tranform an XPM file to and from an XPM data array, without requiring an open X display, use Xpm-

ReadFileToData and XpmWriteFileFromData.

XpmReadFileToData allocates and fills an XPM data array from an XPM file.

int XpmReadFileToData(filename, data_return)

char *filename;

char ***data_return;

filename Specifies the file name to read.

data_return Returns the data array created.

XpmReadFileToData returns XpmOpenFailed if it cannot open the file, XpmNoMemory if insufficient working

storage is allocated, XpmFileInvalid if this is not a valid XPM file, and XpmSuccess otherwise. The allocated data

returned by XpmReadFileToData should be freed with XpmFree when done.

XpmWriteFileFromData writes an XPM data array to an XPM file.

int XpmWriteFileFromData(filename, data)

char *filename;

char **data;

filename Specifies the file name to write.

data Specifies the data array to read.

XpmReadFileToData returns XpmOpenFailed if it cannot open the file, XpmFileInvalid if this is not a valid XPM

data, and XpmSuccess otherwise.

3.1.5 Functions to deal with XPM buffers

An XPM buffer is a character string which may be obtained by simply making the exact copy of an XPM file into

memory.

To create an XImage from an XPM buffer, use XpmCreateImageFromBuffer.

int XpmCreateImageFromBuffer(display, buffer, image_return, shapeimage_return, attributes)

Display *display;

char *buffer;

XImage **image_return;

XImage **shapeimage_return;

XpmAttributes *attributes;

XPM Manual

17

display Specifies the connection to the X server.

buffer Specifies the location of the buffer.

image_return Returns the image which is created.

shapeimage_return Returns the shape mask image which is created if the color None is used.

attributes Specifies the location of a structure to get and store information (or NULL).

The XpmCreateImageFromBuffer works the same way as XpmReadFileToImage, it just parses the buffer instead

of the file. Be aware that the feature provided on some systems by XpmReadFileToImage to deal with compressed

files is not available here.

To create a Pixmap from an XPM buffer, use XpmCreatePixmapFromBuffer.

int XpmCreatePixmapFromBuffer(display, d, buffer, pixmap_return, shapemask_return, attributes)

Display *display;

Drawable d;

char *buffer;

Pixmap *pixmap_return;

Pixmap *shapemask_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

buffer Specifies the location of the buffer.

pixmap_return Returns the pixmap which is created if the color None.

shapemask_return Returns the shape mask pixmap which is created if the color None is used.

attributes Specifies the location of a structure to get and store information.

The XpmCreatePixmapFromBuffer function works the same way as XpmReadFileToPixmap, it just calls Xpm-

CreateImageFromBuffer instead of XpmReadFileToImage.

To create an XPM buffer from an XImage, use XpmCreateBufferFromImage.

int XpmCreateBufferFromImage(display, buffer_return, image, shapeimage, attributes)

Display *display;

char **buffer_return;

XImage *image;

XImage *shapeimage;

XpmAttributes *attributes;

display Specifies the connection to the X server.

buffer_return Returns the buffer which is created.

image Specifies the image.

shapeimage Specifies the shape mask image.

attributes Specifies the location of a structure containing information (or NULL).

The XpmCreateBufferFromImage works as XpmWriteFileFromImage, it just writes to a malloc’ed buffer instead

XPM Manual

18

of to a file. The caller should free the buffer using XpmFree when finished.

XpmCreateBufferFromPixmap creates an XPM buffer from a Pixmap.

int XpmCreateBufferFromPixmap(display, buffer_return, pixmap, shapemask, attributes)

Display *display;

char **buffer_return;

Pixmap pixmap;

Pixmap shapemask;

XpmAttributes *attributes;

display Specifies the connection to the X server.

buffer_return Returns the buffer which is created.

pixmap Specifies the pixmap.

shapemask Specifies the shape mask pixmap.

attributes Specifies the location of a structure containing information (or NULL).

The XpmCreateBufferFromPixmap function works as XpmWriteFileFromPixmap, it just calls XpmCreate-

BufferFromImage instead of XpmWriteFileFromImage. Once again, the caller should free the buffer using Xpm-

Free when finished.

3.1.6 Functions to deal with XPM files and buffers

As a convenience, the XpmReadFileToBuffer and XpmWriteFileFromBuffer are provided to copy a file to a buffer

and to write a file from a buffer. Thus for instance one may decide to use XpmReadFileToBuffer, XpmCreatePix-

mapFromBuffer, and XpmFree instead of XpmReadFileToPixmap. On some systems this may lead to a perfor-

mance improvement, since the parsing will be performed in memory, but it uses more memory.

XpmReadFileToBuffer allocates and fills a buffer from a file.

int XpmReadFileToBuffer(filename, buffer_return)

char *filename;

char **buffer_return;

filename Specifies the file name to read.

buffer_return Returns the buffer created.

XpmReadFileToBuffer returns XpmOpenFailed if it cannot open the file, returns XpmNoMemory if insufficient

working storage is allocated, and XpmSuccess otherwise. The allocated buffer returned by XpmReadFileToBuffer

should be freed with XpmFree when done.

XpmWriteFileFromBuffer writes a buffer to a file.

int XpmWriteFileFromData(filename, data)

char *filename;

char *buffer;

filename Specifies the file name to write.

XPM Manual

19

buffer Specifies the buffer to read.

XpmReadFileTobuffer returns XpmOpenFailed if it cannot open the file, and XpmSuccess otherwise.

3.1.7 Miscellaneous functions

To free possible data stored into an XpmAttributes structure use XpmFreeAttributes.

int XpmFreeAttributes(attributes)

XpmAttributes *attributes;

attributes Specifies the structure to free.

The XpmFreeAttributes frees the structure members which have been malloc’ed: the pixels list.

To dynamically allocate an XpmAttributes structure use the XpmAttributesSize function.

int XpmAttributesSize()

The XpmAttributesSize function provides application using dynamic libraries with a safe way to allocate and then

refer to an XpmAttributes structure, disregarding whether the XpmAttributes structure size has changed or not since

compiled.

To free data possibly stored into an array of XpmExtension use XpmFreeExtensions.

int XpmFreeExtensions(extensions, nextensions)

XpmExtension *extensions;

int nextensions;

extensions Specifies the array to free.

nextensions Specifies the number of extensions.

This function frees all data stored in every extension and the array itself. Note that XpmFreeAttributes call this func-

tion and thus most of the time it should not need to be explicitly called.

To free any data allocated by an Xpm function use the XpmFree function.

int XpmFree(ptr)

char *ptr;

ptr Specifies the data to free.

The current distribution of the Xpm library uses the standard memory allocation functions and thus XpmFree is noth-

ing else than a define to the standard free. However since these functions may be redefined in specific environments

it is wise to use XpmFree.

To get data when building an error message, one can use XpmGetErrorString

char *XpmGetErrorString(errorcode)

XPM Manual

20

int errorcode;

errorcode Specifies the Xpm error.

XpmGetErrorString returns a string related to the given Xpm error code.

3.2 The Advanced Level Interface

The advanced level interface is a set of functions that applications, such as icon editors, which needs to retreive all the

information stored in an XPM file and applications which perform data caching can use.

The following subsections describe these functions and how to use them.

3.2.1 The structures

The purpose of the structures defined in this section is to be able to store XPM images in memory to avoid any

additional parsing without losing information such as color defaults, symbolic color names, and comments.

Indeed, considering the XPM format one can see that there is a lot more information related to a color than just an rgb

value or a colormap index, the XpmColor structure allows to store the different color defaults, the symbolic name of

a color, and the characters string which represents it.

typedef struct {

char *string; /* characters string */

char *symbolic; /* symbolic name */

char *m_color; /* monochrom default */

char *g4_color; /* 4 level grayscale default */

char *g_color; /* other level grayscale default */

char *c_color; /* color default */

} XpmColor;

The XpmImage structure is defined to store the image data definition with its size, the length of the characters strings

representing each color, and the related color table.

typedef struct {

unsigned int width; /* image width */

unsigned int height; /* image height */

unsigned int cpp; /* number of characters per pixel */

unsigned int ncolors; /* number of colors */

XpmColor *colorTable; /* list of related colors */

unsigned int *data; /* image data */

XPM Manual

21

} XpmImage

The XpmImage data is an array of width*height color indexes, each color index referencing the related color in the

color table.

In addition, to get possible comments back while writing out to a file an XpmInfos structure can be passed to the read-

ing function, and then given back to the writing function. Comments are limited to a single string by XPM format sec-

tion. If more exist in the read file, then only the last comment of each section will be stored.

typedef struct {

char *hints_cmt; /* comment of the hints section */

char *colors_cmt; /* comment of the colors section */

char *pixels_cmt; /* comment of the pixels section */

} XpmInfos;

3.2.2 Functions to deal with XPM files

To create an XpmImage from an XPM file, use XpmReadFileToXpmImage.

int XpmReadFileToXpmImage(filename, image, attributes, infos)

char *filename;

XpmImage *image;

XpmAttributes *attributes;

XpmInfos *infos;

filename Specifies the file name to read from.

image Specifies the image structure location.

attributes Specifies the location of a structure to store possible extensions (or NULL).

infos Specifies the location of a structure to store possible information (or NULL).

The XpmReadFileToXpmImage function reads in a file in the XPM format. If the file cannot be opened it returns

XpmOpenFailed. If the file can be opened but does not contain valid XPM data, it returns XpmFileInvalid. If insuf-

ficient working storage is allocated, it returns XpmNoMemory. On success it fills in the given XpmImage structure

and returns XpmSuccess. Also it stores possible extensions in the XpmAttributes structure if one is given and possi-

ble information in the XpmInfos struture if one is given

In addition on systems which support such features XpmReadFileToXpmImage deals with compressed files by fork-

ing an uncompress or gzip process and reading from the piped result. It assumes that the specified file is compressed

if the given file name ends by ’.Z’ or ’.gz’. In case the file name does not end so, XpmReadFileToXpmImage first

looks for a file of which the name is the given one followed by ’.Z’ or ’.gz’; then if such a file does not exist, it looks

for the given file (assumed as not compressed). And if instead of a file name NULL is passed to XpmReadFileToXp-

mImage, it reads from the standard input.

To write out an XpmImage to an XPM file, use XpmWriteFileFromXpmImage

int XpmWriteFileFromXpmImage(filename, image, shapeimage, attributes, infos)

XPM Manual

22

char *filename;

XpmImage *image;

XpmAttributes *attributes;

XpmInfos *infos;

filename Specifies the file name to use.

image Specifies the image.

attributes Specifies the location of a structure containing extensions (or NULL).

infos Specifies the location of a structure to get information from (or NULL).

The XpmWriteFileFromXpmImage function writes an image out to a file in the XPM format. If the file cannot be

opened, it returns XpmOpenFailed. If insufficient working storage is allocated, it returns XpmNoMemory. If no error

occurs then it returns XpmSuccess. In addition if it is given an XpmAttributes structure containing extensions and/

or an XpmInfos struture containing information it will write them out too.

In addition on systems which support such features if the given file name ends by ’.Z’ or ’.gz’ it is assumed to be a

compressed file. Then, XpmWriteFileFromXpmImage writes to a piped compress or gzip process. And if instead

of a file name NULL is passed to XpmWriteFileFromXpmImage, it writes to the standard output.

3.2.3 Functions to deal with XPM data

To create an XpmImage from an XPM data, use XpmCreateXpmImageFromData.

int XpmCreateXpmImageFromData(data, image, attributes)

char **data;

XpmImage *image;

XpmAttributes *attributes;

data Specifies the location of the data.

image Specifies the image structure location.

attributes Specifies the location of an XpmAttributes structure to get and store information, or NULL.

XpmCreateXpmImageFromData works as XpmCreateXpmImageFromFile does, excepts it reads from the given

data instead of a file, and it does not take any XpmInfos structure in argument since a data cannot store any comment.

XpmCreateDataFromXpmImage creates an XPM data from an XmImage.

int XpmCreateDataFromXpmImage(data_return, image, attributes)

char ***data_return;

XxpmImage *image;

XpmAttributes *attributes;

data_return Returns the data which is created.

image Specifies the image.

attributes Specifies the location of a structure to get information.

The XpmCreateDataFromXpmImage function exactly works as XpmWriteFileFromXpmImage does and returns

the same way. It just writes to a single block malloc’ed data instead of to a file. It is the caller’s responsibility to free

XPM Manual

23

the data, using XpmFree when finished. Of course this function does not take any XpmInfos structure in argument

since a data cannot store any comment.

3.2.4 Functions to deal with XPM buffers

To create an XpmImage from an XPM buffer, use XpmCreateXpmImageFromBuffer.

int XpmCreateXpmImageFromBuffer(buffer, image, attributes, infos)

char *buffer;

XpmImage *image;

XpmAttributes *attributes;

XpmInfos *infos;

buffer Specifies the location of the buffer.

image Specifies the image structure location.

attributes Specifies the location of a structure to get and store information (or NULL).

infos Specifies the location of a structure to store possible information (or NULL).

The XpmCreateXpmImageFromBuffer works the same way as XpmReadFileToXpmImage, it just reads the buff-

er instead of the file. Be aware that the feature provided on some systems by XpmReadFileToXpmImage to deal with

compressed files is not available here.

To create an XPM buffer from an XpmImage, use XpmCreateBufferFromXpmImage.

int XpmCreateBufferFromXpmImage(buffer_return, image, attributes)

char **buffer_return;

XpmImage *image;

XpmInfos *infos;

buffer_return Returns the buffer which is created.

image Specifies the image.

attributes Specifies the location of a structure containing information (or NULL).

infos Specifies the location of a structure to get possible information (or NULL).

The XpmCreateBufferFromXpmImage works as XpmWriteFileFromXpmImage, it just writes to a malloc’ed

buffer instead of to a file. The caller should free the buffer using XpmFree when finished.

3.2.5 Functions to deal with X images

To create an XImage from an XpmImage, use XpmCreateImageFromXpmImage.

int XpmCreateImageFromXpmImage(display, image, image_return, shapeimage_return, attributes)

Display *display;

XpmImage *image;

XImage *image_return;

XImage *shapeimage_return;

XPM Manual

24

XpmAttributes *attributes;

display Specifies the connection to the X server.

image Specifies the XpmImage.

image_return Returns the image which is created.

shapeimage_return Returns the shape mask image which is created if any.

attributes Specifies the location of a structure containing information (or NULL).

From the given XpmImage and XpmAttributes if not NULL, XpmCreateImageFromXpmImage allocates colors

and creates X images following the same mechanism as XpmReadFileToImage.

To create an XpmImage from an XImage, use XpmCreateXpmImageFromImage.

int XpmCreateXpmImageFromImage(display, image, shapeimage, xpmimage, attributes)

Display *display;

XImage *image;

XImage *shapeimage;

XpmImage *xpmimage

XpmAttributes *attributes;

display Specifies the connection to the X server.

image Specifies the image which is created.

shapeimage Specifies the shape mask image which is created if any.

xpmimage Specifies the location of an XpmImage structure.

attributes Specifies the location of a structure containing information (or NULL).

From the given X images and XpmAttributes if not NULL, XpmCreateXpmImageFromImage creates an XpmIm-

age following the same mechanism as XpmWriteFileFromImage.

3.2.6 Functions to deal with X pixmaps

To create a Pixmap with its possible related shapemask from an XpmImage, use XpmCreatePixmapFromXpmIm-

age.

int XpmCreatePixmapFromXpmImage(display, d, image, pixmap_return, shapemask_return, attributes)

Display *display;

Drawable d;

XpmImage *image;

Pixmap *pixmap_return;

Pixmap *shapemask_return;

XpmAttributes *attributes;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

image Specifies the XpmImage.

pixmap_return Returns the pixmap which is created.

XPM Manual

25

shapemask_return Returns the shape mask which is created if any.

attributes Specifies the location of a structure to get and store information (or NULL).

XpmCreatePixmapFromXpmImage creates X images calling XpmCreateImageFromXpmImage with the given

XpmImage and XpmAttributes, then it creates the related pixmaps which are returned to pixmap_return and shape-

mask_return using XPutImage. Finally it destroys the X images with XDestroyImage.

To create an XpmImage from a Pixmp, use XpmCreateXpmImageFromPixmap.

int XpmCreateXpmImageFromPixmap(display, pixmap, shapemask, xpmimage, attributes)

Display *display;

Pixmap *pixmap;

Pixmap *shapemask;

XpmImage *xpmimage

XpmAttributes *attributes;

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

shapemask Specifies the shape mask pixmap.

xpmimage Specifies the location of an XpmImage structure.

attributes Specifies the location of a structure containing information (or NULL).

From the given pixmaps and XpmAttributes if not NULL, XpmCreateXpmImageFromPixmap gets the related X

images by calling XGetImage, then it gives them to XpmCreateXpmImageFromImage to create an XpmImage

which is returned to xpmimage. Finally it destroys the created X images using XDestroyImage.

3.2.7 Miscellaneous functions

To free possible data stored into an XpmImage structure use XpmFreeXpmImage.

int XpmFreeXpmImage(image)

XpmImage *image;

image Specifies the structure to free.

The XpmFreeXpmImage frees the structure members which are not NULL, but not the structure itself.

To free possible data stored into an XpmInfos structure use XpmFreeXpmInfos.

int XpmFreeXpmInfos(infos)

XpmInfos*infos;

iinfos Specifies the structure to free.

The XpmFreeXpmInfos frees the structure members which are not NULL, but not the structure itself.

XPM Manual

Index of Functions

XpmAttributesSize 19

XpmCreateBufferFromImage 17

XpmCreateBufferFromPixmap 18

XpmCreateBufferFromXpmImage 23

XpmCreateDataFromImage 15

XpmCreateDataFromPixmap 15

XpmCreateDataFromXpmImage 22

XpmCreateImageFromBuffer 16

XpmCreateImageFromData 14

XpmCreateImageFromXpmImage 23

XpmCreatePixmapFromBuffer 17

XpmCreatePixmapFromData 14

XpmCreatePixmapFromXpmImage 24

XpmCreateXpmImageFromBuffer 23

XpmCreateXpmImageFromData 22

XpmCreateXpmImageFromImage 24

XpmCreateXpmImageFromPixmap 25

XpmFree 19

XpmFreeAttributes 19

XpmFreeExtensions 19

XpmFreeXpmImage 25

XpmFreeXpmInfos 25

XpmGetErrorString 19

XpmReadFileToBuffer 18

XpmReadFileToData 16

XpmReadFileToImage 11

XpmReadFileToPixmap 12

XpmReadFileToXpmImage 21

XpmWriteFileFromBuffer 18

XpmWriteFileFromData 16

XpmWriteFileFromImage 13

XpmWriteFileFromPixmap 13

XpmWriteFileFromXpmImage 21

